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A Knowledge-Based System for Generation and 
Control of Finite-Element Meshes in Forging Simulation 

P.D. Dabke, L Haque, M. Srikrishna, and J.E. Jackson 

This article presents a two-dimensional mesh generation system designed to generate all quadrilateral 
meshes for forging applications. The system splits the meshing geometry into a set of"primitives" using a 
knowledge-based system. It further splits these primitives into quadrilaterals using standard primitive 
splitting algorithms and meshes each quadrilateral using parametric mapping. Reasons for choosing this 
approach are explained, followed by a brief description of the implementation procedures. Three map- 
ping techniques---namely, two-dimensional Lagrange interpolation, two-dimensional Hermite interpola- 
tion, and numerical solution of Poisson's equation--were tested for their applicability to forging prob- 
lems. This article provides a comparison of the three mapping techniques in terms of mesh quality and 
computational time. Finally, it presents results of three forging simulations that demonstrate the effects 
of element distortion on finite-element solutions of large plastic deformation problems and points out the 
correlation between distortion parameters such as skew and taper and the solution accuracy. 

1. Introduction 

SINCEits introduction in metal-forming analysis, the finite-ele- 
ment method has proved to be an effective tool for forging proc- 
ess design. The finite-element analysis provides a detailed pic- 
ture of the forging process and eliminates the need of adopting 
an expensive and time-consuming trial and error approach to- 
ward forging design. It is commonly recognized that the suc- 
cess of a finite-element simulation of such large plastic strain 
problems depends on the following factors: 

�9 Choice of the material constitutive relations in the finite- 
element formulation 

�9 Representation of friction and thermal boundary conditions 
at the die/workpiece interface 

�9 Numerical factors such as integration schemes, mesh qual- 
ity in terms of mesh density distribution and element distor- 
tion, and remeshing 

In the recent past, significant attention has been paid to the 
first two issues, namely, the representation of the material con- 
stitutive relations and simulation of frictional boundary condi- 
tions, ll21 Researchers have also studied the influence of nu- 
merical integration schemes on the accuracy of finite-element 
solutions.I2,3lLittle, however, has been done on quantifying the 
influence of mesh generation schemes, mesh quality, and re- 
meshing on the accuracy of  large deformation solutions. Forg- 
ing simulations are time intensive and costly, typically requir- 
ing a few hours of  analysis time, even for relatively simple 
problems. A proper discretization of the workpiece into finite 
elements is therefore critical to obtaining cost-effective and ac- 
curate finite-element solutions and assumes a great importance 
in forging applications. Normally, mesh generation for these 
problems is done either manually, which works fairly well for 

P.D. Dabke, 1. Haque, and M. Srikrishna, Department of Mechani- 
cal Engineering, Clemson University, Clemson. South Carolina; and 
J.E. Jackson. Department of Aerospace Engineering, University of 
Alabama, Tuscaloosa, Alabama. 
*PATRAN is a registered trademark of PDA Engineering. 

simple shapes, or through the use of  built-in capabilities of 
commercially available packages like PATRAN.* Commercial 
mesh generators such as PATRAN normally use parametric 
mapping for mesh generation. Although this option offers a 
limited improvement over manual mesh generation, the user is 
still required to define the meshing geometry in terms of map- 
pable patches. Hence, this approach is not fully automated. 
Mesh generation using this approach is still a tedious task and 
does not provide a desirable level of flexibility. It is found to be 
even more tedious when used for remeshing. Our experience 
also indicates that the analyst needs to have a thorough under- 
standing of the simulation process to produce a good quality 
mesh giving reliable finite-element results. In short, there is a 
genuine need for automating mesh generation, because this 
would result in significant saving in analysis time and would 
make finite-element analysis accessible to a forging designer 
relatively inexperienced in finite elements. 

This article addresses the development of a knowledge- 
based system for automating mesh generation and remeshing in 
large deformation problems. The method presented here was 
implemented into CFORM, [41 a finite-element package devel- 
oped for research purposes, to simulate plane-strain and axi- 
symmetric material flow in hot forming operations for conven- 
tional and powdered metals. CFORM is based on a rigid 
thermoviscoplastic formulation, as are other well-known com- 
puter codes such as ALPIDT. [5] It is currently being extended to 
the forming of whisker-reinforced metal matrix composites.[6l 
This article first discusses the structure of  the knowledge-based 
system with a brief description of the mesh generation algo- 
rithm and the implementation details. The system produces 
two-dimensional all-quadrilateral meshes, because they are 
generally found to be computationally more reliable, [7l and 
provides a framework for controlling the mesh parameters. The 
system is based on the mapped mesh generation approach and 
tests three parametric mapping methods, namely two-dimen- 
sional Lagrange interpolation, two-dimensional Hermite inter- 
polation, and numerical solution of Poisson's equation, for 
their applicability to forging analysis. This article provides a 
comparison between the three mapping techniques in terms of 
element distortion and computational time. Finally, the effect 
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of element distortion on finite-element solutions in large plastic 
strain problems is discussed by presenting results of  three forg- 
ing simulations. 

2. Mesh Generation Approach 

A number of methods are available in the literature for gen- 
eration of finite-element meshes. Mesh generation methods, 
commonly used today for two-dimensional problems, can be 
classified into four approaches: [8,91 

�9 Node placement followed by element generation 

�9 Element generation by nodal subdivision 

�9 Mesh generation by spatial subdivision (quadtree methods) 

�9 Mesh generation by parametric space mapping 

The first approach[l~ able to generate either an all trian- 
quadrilaterals, but gular mesh, or a mixture of triangles and ISl 

does not guarantee an all quadrilateral mesh. Amongst the other 
three, the mapped mesh approach was selected for implementa- 
tion, for the following reasons. Mapped mesh generation pro- 
duces better shaped quadrilateral elements at the boundary with 
a regular pattern of connectivity, compared to other mesh gen- 
eration techniques. These techniques [l 2-15] sometimes result in 
distorted and very small boundary elements. The distortion in 
the boundary elements is an important concern in forging 
analysis. High stress/strain gradients are often expected near 
the workpiece boundary. The element stresses near the bound- 
ary are directly related to the die stresses and forging loads. 
Thus, distortion in the boundary elements would have an ad- 
verse effect on the accuracy of prediction of forging parameters 
such as peak stresses and loads. Mapped mesh generation 
methods have a lower computational cost than the other two ap- 
proaches. 

The mesh generation system developed here utilizes para- 
metric mapping in conjunction with a knowledge-based ap- 
proach, suggested by T.D. Blacker e t  al. [16,171 It first splits the 
two-dimensional geometry to be meshed into meshable 
patches. These patches, also called primitives, are decomposed 
further into quadrilaterals, using standard primitive decompo- 
sition algorithms. Finally, each of  these quadrilaterals is 
meshed using a parametric mapping technique. The reasons for 
adopting this approach are as follows. The knowledge-based 
system automates the task of splitting the meshing geometry 
into mappable patches. This minimizes the user interaction and 
allows complete automation of the mesh generation process. A 
knowledge-based approach focuses on a narrow domain of 
meshing problems (i.e., geometries encountered in forging 
analysis). Although this limits the use of the mesh generation 
system to a specific class of problems, it is much cheaper and 
more efficient than other approaches that try to mesh arbitrarily 
complex geometries. The knowledge-based system can be ex- 
tended to automate other knowledge intensive tasks such as 
material selection, determination of time step size, remeshing, 
etc. 

The mesh generation approach used here is adequately de- 
scribed in Ref 1 6 and will not be described in detail. The knowl- 
edge representation and dissection strategies are unique to this 

work and are described in detail in the next section. The algo- 
rithmic procedure for implementing these strategies is as fol- 
lows: 

1. Read the input geometry and compute interior angles at the 
region vertices. 

2. Group the vertices into five classes according to their interior 
angles. Three of the classes include vertices that are classi- 
fied exclusively as comers, side, or dissection vertices. The 
other two classes include (1) vertices that can be treated as 
comers or as side vertices and (2) vertices that can be treated 
as side or dissection vertices. 

3. Test the region to see if it is simple, or needs to be dissected. 
Aregion is considered simple if(l) the number of comer ver- 
tices is between 2 and 5, (2) there is no dissection vertex, and 
(3) the region can be interpreted as a primitive providing ac- 
ceptable mesh quality. 

4. Ifthe regionis not simple, dissect it into two subregions, such 
that at least one subregion is simple. If the other subregion is 
also simple, proceed to Step 5; otherwise dissect the other 
subregion recursively until all the subregions formed are 
simple. 

5. Split each primitive into quadrilaterals and mesh each quad- 
rilateral using parametric mapping. 

3. Mesh Generation System 

The meshing system consists of two modules. The first mod- 
ule, written using PROLOG and C, is a knowledge-based sys- 
tem for splitting a given two-dimensional geometry into mesh- 
able primitives. This module writes the primitive information 
in a text file, which serves as an input file for the second mod- 
ule. The second module consists of a set of FORTRAN subrou- 
tines for splitting the primitives further into quadrilaterals and 
meshing them using a parametric mapping method. An outline 
of the two modules is presented below. More details about the 
meshing system can be found in Ref 1 8. 

3.1 PROLOG Module 

A flowchart depicting the primitive generation algorithm is 
shown in Fig. 1. The knowledge representation strategy 
adopted in this module is a combination of rule-based and 
frame-based reasoning.[192~ procedural part of the system 
is programmed as a set of PROLOG rules and makes use of the 
built-in inference engine provided by PROLOG. Facts, de- 
scribing the geometry of  the region being decomposed, appear 
as "frames". The system defines the following generic frames 
for describing the geometry: 

�9 Point 
�9 Segment 
�9 Primitive 

�9 Region 

A point is defined by its coordinates. A segment can be either a 
straight line or a circular arc. All the segments are defined as 
vectors. A straight segment is defined by its end points. An arc 
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Fig. 1 Primitive generation algorithm. 
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is defined by its end points, coordinates of  the center, and its 
type (concave/convex). A primitive can be a quadrilateral, a 
pentagon, a triangle, or a semicircle. A region is defined by its 
vertices. The geometric entities described above form the basic 
frame structure of any meshing problem. At the beginning of 
execution, the inverted tree representing the hierarchical frame 
structure appears as shown in Fig. 2. After reading the geomet- 
ric input for the region to be meshed, the program creates in- 
stances representing region vertices and boundary segments. 
As the decomposition proceeds, new instances, representing 
the dissection segments and points created by the program, are 
added to the tree. An example of the resulting tree at the end of 
execution is shown in Fig. 3. 

Four dissection strategies have been used to decompose a 
region into a set of meshable primitives. These strategies are: 

�9 Vertex angles greater than 300 ~ This strategy tries to con- 
vert sharp concave vertices into two-sided vertices. In the 
first step, all boundary segments perpendicular to either of 
the boundary segments forming the dissection angle within 
a certain tolerance are found. In the next step, only those 
segments are considered that intersect with the perpendicu- 
lar drawn from the dissection vertex. Finally, the shortest 
perpendicular is chosen as the dissection segment. 

�9 Angles greater than 210 ~ This strategy consists of draw- 
ing a perpendicular from a vertex on a boundary segment 
parallel (within a certain tolerance) to the segments forming 

I Thing [ 
I 

Fig. 2 Initial frame structure. 

the dissection vertex and having the opposite sense of di- 
rection. If the angle is closer to 210 ~ the dissection will pro- 
duce two comer vertices. If the angle is closer to 270 ~ , the 
dissection will produce a comer and a side vertex, and if the 
angle is more than 300 ~ the dissection will result in a comer 
and a dissection vertex. 

Large convex arcs: End points of the convex arcs that are 
close to a semicircle are joined by a dissection segment to 
produce a semicircle with comers having angles close to 90 ~ 

Concave arcs: This strategy tries to find a straight bound- 
ary segment parallel to the tangent at the midpoint of the 
concave arc. This strategy results in a dissection segment 
with excellent corners at both ends. 

3.2 FORTRAN Module 

The FORTRAN module starts its execution after the input 
geometry has been split into acceptable primitives. It reads the 
primitive definition and connectivity data, one primitive at a 
time, identifies the type of  primitive, and calls an appropriate 
subroutine for meshing it. A pentagon and triangles are split 
into three quadrilaterals. Semicircles are split into two trian- 
gles, and each triangle is meshed using the triangle decomposi- 
tion routine. 

The final step in the mesh generation process is meshing in- 
dividual quadrilaterals, using a parametric mapping technique. 
The system offers three options for meshing the quadrilaterals: 

�9 Two-dimensional Lagrange interpolation 

�9 Two-dimensional Hermite interpolation 

�9 Numerical solution of Poisson's equation 

The first two methods are algebraic interpolation proce- 
dures and extend the use of unidirectional Lagrange and Her- 
mite functions to two dimensions. Hermite interpolation allows 
specification of the first derivative of the function and the two- 
dimensional interpolation uses this fact to impose orthogonal- 
ity at the boundary. The third method generates the nodal coor- 
dinates by solving Poisson's equation. The form of Poisson's 

Fig. 3 Frame structure at the end of decomposition. 
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Table 1 Computational Time (on Sun Workstation) for 
Meshes Shown in Fig. 9 

Mapping method User time, sec 
Lagrangc ............................................................. 2,9 
Hermite ............................................................... 3.2 
Poisson ................................................................ 3.6 

(a) 

"- Z 

(b) 

Fig. 4 Initial mesh for cylinder upsetting. (a) Algebraic interpo- 
lation. (b) Poisson's equation solver. 

equation used here is suggested by Thompson et al. [2U and is 
given as follows: 

V2~ = g22p [1] 
g 

VZ.q = g11Q 
g 

The corresponding equations to be solved to obtain the mesh 
coordinates are: 

g22~+Px~)+gi,(xrlrl+Qxq)-g12X~rt =0 [2] 

g22(Y~+PY~)+g,I "Yrlq+QYq)-gI2Y~q =0 

where 

2 2 = + y2 
gll =x~ +y~ g22 4 

2 
gl2=X~xq+ y~Yq g:(x~yq-xnY~l 

Here, (~,rl) are the parametric coordinates; (x,y) are the 
physical coordinates; and the subscripts denote differentiation. 
P and Q are called control functions because their values can be 
adjusted to control the grid line spacing and intersection angles 
in the mesh. In Laplacian smoothening, both P and Q are equal 
to zero. The numerical equation solver uses two-sided differ- 
ence approximations for points within the boundary and one- 
sided difference approximations for the boundary points for 
calculating partial derivatives. The mesh coordinates are ob- 
tained by iteratively solving Eq 2 and adjusting control func- 
tion values in each iteration so as to obtain orthogonality at the 
boundary. 

Most mapped mesh generators use two-dimensional La- 
grange interpolation, also called transfinite interpolation, to 
generate an initial guess and generate the final mesh using 
Laplacian smoothening. Hermite interpolation allows the 
specification of first derivative of the function being interpo- 
lated. This is used to impose orthogonality at the mesh bound- 
ary, and therefore, this method was expected to offer an im- 
provement over Lagrange interpolation. Laplacian 
smoothening is equivalent to a numerical solution of  Laplace's 
equation. Poisson's equation reduces to Laplace's equation 
when both the control functions are zero. It can be mathemati- 
cally provedl2U that Laplace's equation cannot yield ortho- 
gonality at the boundary, if the boundary point distribution is 
not uniform. As pointed out earlier, the element shape at the 
boundary is an important issue, and Poisson's equation was ex- 
pected to provide better meshes in this respect. 

4. Comparison of Mapped Mesh Generation 
Methods 

A number of geometries were meshed using the three map- 
ping methods mentioned in the previous section. The mesh to- 
pology was preserved in each case so as to make a fair compari- 
son. The three mapping methods were compared on three 
points--namely, element shapes at the boundary, overall 
smoothness, and computational time. The remainder of this 
section is devoted to the discussion of  these three points. 

The first point for comparison is the shape of the boundary 
elements. Element shapes produced by Poisson's equation 
solver are the worst of the three. The other two methods pro- 
duce much better meshes in this respect. In more complex 
shapes, Hermite interpolation has been observed to yield better 
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(a) 

(b) 

Fig. 5 Effective strain contours at the 44th time step for: cylin- 
der upsetting. (a) Algebraic interpolation. (b) Poisson's equa- 
tion solver. (A = 0.9, B = 0.75, C = 0.6, D = 0.45, E = 0.3.) 
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Fig. 6 Effective strain distribution in the elements in contact 
with the upper die (cylinder upsetting, time step No. 44). 

Fig. 7 Initial die and billet configuration for center punch 
forging. 

mesh angles than Lagrange interpolation. The poor quality of 
Poisson's meshes results from the tendency of elliptical equa- 
tion solvers to produce uniformly spaced grid lines. This is es- 
pecially noticeable in Fig. 4(a). Here, the element length 
changes along the vertical boundaries, but the horizontal grid 
lines are almost equally spaced in the middle, resulting in a very 
skewed mesh near the vertical boundaries. Two measures are 
suggested to alleviate this problem. First, boundary nodes 
should be placed in a manner that avoids an abrupt change in 

the element length along the boundary. Second, a better ap- 
proximation needs to be used in the calculation of the control 
functions P and Q. 

The second point is the overall smoothness of the mesh. The 
Poisson's equation solver produces the best meshes in terms of  
overall smoothness, suggesting that use of this technique with a 
smooth boundary point distribution might prove to be the best 
strategy for mesh generation. Once again, the other two meth- 
ods yield comparable results, with Hermite interpolation giving 
slightly better mesh quality. 

The third point for comparison is the computational time 
needed for mesh generation. The Lagrange interpolation 
method is the quickest and the Poisson's equation solver the 
slowest. Computational time required by each method to mesh 
the geometry shown in Fig. 9 are given in Table 1. 

The next two sections present results of three axisymmetric 
forging simulations performed using the finite-element module 
of CFORM, which make use of this mesh generation system. 
These forging cases are (1) cylinder upsetting, (2) center punch 
forging, and (3) H-section preform. The first section gives the 
simulation details and the corresponding finite-element results. 
The next section compares the three mapping methods in terms 
of distortion parameters such as skew, tapers, aspect ratio, etc., 
and discusses the effect of  mesh distortion on finite-element re- 
sults. 
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Fig. 8 Initial mesh for center punch forging. (a) Lagrange. (b) 
Hermite. (c) Poisson. 

(c) 

Fig. 9 New mesh after remeshing at time step No. 40 (center 
punch forging). 
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Fig. 10 Effective strain rate distribution in the elements in con- 
tact with the moving die (center punch forging, time step No. 
40). 

5. Details of Forging Simulations 

5.1 Cylinder Upsetting 

The initial height-to-diameter ratio of the cylinder was cho- 
sen to be 1.0. The material was assumed to be rigid perfectly 
plastic, with a yield point of 15,000 psi. Friction between the 
die and the billet was assumed to be proportional to the normal- 
ized radius, with a proportionality constant of 0.3. Only the top 
right cross section of the cylinder was discretized due to sym- 
metry of the problem. The two algebraic interpolation methods 
yield identical meshes. The analysis was done using a 7 by 6 
element mesh and a 14 by 12 element mesh. The meshes gener- 
ated in the latter case are shown in Fig. 4. The finite-element re- 
sults were compared after time step 44, with those obtained by 
Kobayashi[221 for an identical problem. The effective strain dis- 
tribution at the 44th time step is shown in Fig. 5. Both mapping 
methods are observed to yield closely matching results with 
those in Ref22 for both mesh configurations. Aplot of effective 
strain in individual elements against element number, for the 
elements in contact with the upper die, is shown in Fig. 6. Once 
again, both mapping methods are observed to be in close agree- 
ment with each other. 

5.2 Center Punch Forging 

The die geometry and initial and final mesh configurations 
for this case are shown in Fig. 7, 8, and 9. The material was as- 
sumed to be rigid viscoplastic, with an initial yield point of 
20,700 psi. A constant shear friction factor of 0.095 was used to 
incorporate the friction at the die/workpiece interface. The 
stress-strain rate relationship was assumed to be strain depend- 
ent and five stress-strain rate tables, each corresponding to a 
specific strain value, were used to calculate the appropriate ma- 
terial constants in the analysis. More details about this simula- 
tion can be found in Ref 23. 

(a) (b) (c) 

Fig. II  Effective stress contours at time step No. 30 (center punch forging). (a) Lagrange. (b) Hermite. (e) Poisson; A = 43,500; B = 41,500; 
C = 39,500; D = 37,500; E = 35,500; F = 33,500; G = 31,500; H = 29,500; I = 27,500; J = 25,500; K = 23,500, All values are in psi. 
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('0) (c) (a) 

Fig. 12 Effective stress contours at time step No. 50 (center punch forging). (a) Lagrange; (b) Hermite; (c) Poisson; A = 44,500; B = 
40,500; C = 36,500; D = 32,500; E = 28,500; F = 24,500; G = 20,500; H = 16,500; I = 12,500; J = 850. All values are in psi. 
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Fig. 13 Effective strain rate distribution in the elements in contact 
with the moving die (center punch forging, time step No. 50). 
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Fig. 15 Decomposition of the meshing geometry into mappable 
patches. (a) Original geometry. (b) Decomposition into two 
primitives. (c) Semicircle decomposition. (d) Decomposition 
into seven mappable patches. 

The analysis was done for up to 50 time steps, with a uni- 
form time step size of  3 x 10 - 4see. This corresponds to about 
50% of  the total die stroke. Two mesh configurations, one with 
210 elements and 240 nodes and another with 320 elements and 
357 nodes, were tried for up to the 40th time step for all three 
mapping techniques. Neither configuration showed any sig- 
nificant difference in the finite-element results even after the 
40th time step. A plot of elemental strain rate variation in the 
row of elements touching the upper die at time step No. 40 is 
shown in Fig. 10. In this plot, the element numbering starts 
from the element in the top left comer. The effective stress con- 
tour plots, for the latter case, at t ime step No. 30 are shown in 
Fig. 11. Remeshing was done at time step No. 41, and the analy- 
sis was continued until the 50th time step, using a new mesh 
consisting of  210 elements and 240 nodes. The stress contour 
plots at time step No. 50 are shown in Fig. 12. The elemental 
strain rate plot at the 50th time step is shown in Fig. 13. Aplo t  
of forging load against the time step is shown in Fig. 14. 

Until the remeshing step, there is little difference in the re- 
suits produced by the three mapping methods, and the contour 
plots as well as the elemental strain plot show close agreement. 
The contour plots at time step No. 50 also compare very well. 
The difference becomes noticeable in the elemental strain rate 
plot shown in Fig. 13. The forging loads also start deviating 
from time step No. 40. In general, the results obtained using the 
meshes produced by the algebraic interpolation methods are 
close, throughout the analysis. The meshes produced using 
Poisson's equation solver yield results that are markedly differ- 
ent from the other two methods, particularly after the remesh- 
ing step. 
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Fig. 16 New mesh after rezoning at time step No. 191 (H-sec- 
tion preform). (a) Lagrange. (b) Hermite. (e) Poisson. 
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Fig. 17 Effective stress distribution in the elements in contact 
with the moving die (H-section preform at die closure). 

32 

5.3 H-Section Preform 

The H-section preform analysis began with a cylindrical bil- 
let. The material was assumed to be rigid viscoplastic. Stress- 
strain rate relation was assumed to be independent of strain, and 
one stress-strain rate table was used to incorporate material 
properties. A constant shear friction factor of 0.3 was used to 
model friction. The first remeshing was done at time step No. 
91. This corresponds to about 38% of the total die stroke. The 
initial mesh, as well as the new mesh after remeshing, was gen- 
erated using Lagrange interpolation. The second remeshing 
was performed after time step No.191, which corresponds to 
approximately 70% of the total die stroke. The workpiece ge- 
ometry was decomposed into two primitives: a semicircle and a 
quadrilateral, and was meshed using the three mapping meth- 
ods. The decomposition process is illustrated in Fig. 15. The 
meshes produced by the three mapping methods after remesh- 
ing are shown in Fig. 16. The analysis was continued until die 
closure. Figure 17 shows an elemental stress plot for the ele- 
ments in contact with the moving die. The element numbers in 
this plot start with the element at the top left corner of the billet 
and proceed along the top row of elements touching the upper 
die, up to the element at the bottom right corner. The effective 
stress contours at die closure are shown in Fig. 18. 

(a) 

(b) 

I., 14 r 

(c) 

Fig. 18 Effective stress contours at die closure (H-section pre- 
form). (a) Lagrange; (b) Hermite; (e) Poisson; A = 1400; B = 
1300; C = 1200; D -- 1100; E = 1000; F = 900; G = 800; H = 700; 
I = 600; J = 500. All values are in N/mm 2. 
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Table 2 Average Distortion Parameters in Cylinder 
Upsetting 

Distortion parameter Lagrange Hermite Poisson 
Taper in x direction .............. 7.1429E-09 7.1429E-09 1.5918E-02 

0 0 9.6706-03 
Taper in y direction .............. 7.1429E-09 7.1429E-09 1.5919E-02 

0 0 9.6706E-03 
Skew ................................... 7.1429E-09 7.1429E-09 8.2733E-02 

0 0 7.6910E-03 
Aspect ratio ......................... 1.1905 1.1905 1.1892 

1.3333 1.3333 1.2386 

Note: Two averages are given for each distortion parameter. The first row 
gives an average for the entire mesh, and the second row gives an average 
value of the boundary elements in contact with the moving die. 

Table 3 Average Distortion Parameters in Center 
Punch Forging of Initial Mesh 

Distortion parameter Lagrange  Hermite Poisson 
Taper in x direction ............. 1.2812E-02 1.6046E-02 1.8404E-02 

1.0208E-07 1.1747E-02 2.5056E-02 
Taper in y direction ............. 1.2812E-02 1.6062E-02 2.0683E-02 

1.0208E-07 1.1755E-02 2.9038E-02 
Skew ................................. 9.2660E-02 0.1370 0.1650 

1.3143E-07 1.5006E-02 0.1330 
Aspect ratio ........................ 1.2409 1.2812 1.1564 

1.1095 1.0818 1.2533 

Note: Two averages are given for each distortion parameter. The first row 
gives an average for the entire mesh, and the second row gives an average 
value of the boundary elements in contact with the moving die. 

Table 4 Average Distortion Parameters in Center 
Punch Forging of New Mesh after Time Step 41 

Distortion parameter Lagrange Hermite Poisson 
Taper in x direction ........... 3.1975E-02 3.5504E-02 4.2966E-02 

7.9204E-02 7.6128E-02 0.1733 
Taper in y direction ........... 2.8178E-02 2.9628E-02 3.8091E-02 

8.2023E-02 7.5409E-02 0.1475 
Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.4218 0.4536 0.3940 

0.1080 0.2472 0,6148 
Aspect ratio ...................... 1,4626 1.4990 1.3042 

1,6978 1.5830 1.4995 

Note: Two averages are given for each distortion parameter. The first row 
gives an average for the entire mesh, and the second row gives an average 
value of the boundary elements in contact with the moving die. 

Table 5 Average Distortion Parameters in H-section 
Preform after Time Step 191 

Distortion parameter Lagrange  Hermite Poisson 
Taper in x direction . . . . . . . . . . .  3.2675E-02 3.3357E-02 5.4876E-02 

0.0428 0.0415 0.1453 
Taper in y direction ........... 2.9242E-02 2.9909E-02 5.0660E-02 

0.0425 0.0421 0.1344 
Skew ............................... 0.2095 0.2121 0.2544 

0.2940 0.3101 0.4895 
Aspect ratio ...................... 1.8447 1.8449 1.7908 

1.7894 1.7776 1.7902 

Note: Two averages are given for each distortion parameter. The first row 
gives an average for the entire mesh, and the second row gives an average 
value of the boundary elements in contact with the moving die. 

Un l ike  the first  two cases, b o t h  the stress con tou r  plots  and  
the  e lementa l  s tresses ob ta ined  us ing  different  m e t h o d s  show a 
cons ide rab le  dif ference be tween  the resul ts  ob ta ined  us ing  
Po i s son ' s  mesh  and  the ones ob ta ined  us ing  a lgebra ic  interpo-  
la t ion  methods .  The  difference in the e lementa l  stress values  is 
s igni f icant  and  is as h igh  as 200% in the ex t reme case. 

6. Effect of Elemental Distortion on 
Finite-Element Solutions 

Tables  2 th rough  5 present  ave rage  dis tor t ion pa ramete r  val- 
ues  for  four  different  meshes-- - (1)  init ial  mesh  for cyl inder  up- 
set t ing,  (2) init ial  mesh  for center  p u n c h  forging,  (3) new m e s h  
for  center  p u n c h  forging after  r emesh ing  at the  41st  step, and  
(4) new mesh  for  H-sect ion p re fo rm after  r e m e s h i n g  at the 
191 st t ime  step. The  dis tor t ion pa ramete r s  p resen ted  are (1) ta- 
per  in  x direct ion,  (2) taper in y direct ion,  (3) skew, and  (4) as- 
pect  ratio. Def in i t ions  of  these  pa ramete r s  can  be  found  in Re f  
24. The  aspect  rat io of the e l emen t s  does  not  affect  the  solut ion 
accuracy  to a great  extent.  [251 Also ,  the  aspect  ra t ios  in all the 
cases  are comparab le  in value.  For  this  reason,  the fo l lowing 
d i scuss ion  takes into account  on ly  the other  three  parameters  
and  does  not  focus  on  the effect  of  aspect  ratio. 

A rev iew of  the f in i te -e lement  resul ts  p resen ted  in the pre-  
v ious  sect ion together  with the  co r respond ing  dis tor t ion pa-  

ramete r  tables  clearly demons t ra t e  the corre la t ion be tween  the 
dis tor t ion in the bounda ry  e lements  in contact  wi th  the  mov ing  
die and  the solut ion accuracy.  The  boundary  e l ement  dis tor t ion 
affects not  only the s t resses  in boundary  elements ,  but  also the 

ent ire  s tress  d i s t r ibu t ion  pat tern  in the  billet, as obse rved  in H- 
sect ion p re fo rm analysis .  The  resul ts  give an idea o f  the order  

of the  cri t ical  magn i tudes  of the  distort ion parameters .  The  re- 
sults for  the first two cases (Fig. 5, 6, 10, and 11 and  Tables 2 
and 3) indica te  that,  i f  the  dif ference in the dis tor t ion parameter  
values  is of  the  order  of  10 -2, it does  not resul t  in a s ignif icant  
d i f ference  in the solut ions.  On  the other  hand,  magn i tudes  more  

than 10 -1, as in Tables  3 and 4, are found  to in t roduce  a consid-  
erable  dev ia t ion  in the  results .  

The  average  d is tor t ion  pa ramete r  values for the  ent i re  mesh  
are found  to be a poor  indicator  of  the mesh  quality,  and this 
conf i rms  the  f ind ings  of  another  study/26] regard ing  the effect 

of  e l emen t  d is tor t ion on  f in i te -e lement  solutions.  This  is indi-  

cated by  the center  p u n c h  forging results  p resen ted  in Fig. 13 
and 14 and the  average  dis tor t ion values  g iven  in Table  4. These  
resul ts  also indicate  that  the  stress contour  plots  a lone  cannot  be 

used to make  a fair  compar i son  be tween  two f in i te -e lement  so- 
lutions.  The  stress  con tou r  plots  in this  case would  indicate  that  

all the  three  solut ions  are in a fair  agreement  wi th  each  other, 
when ,  in fact,  the forging loads show a s igni f icant  deviat ion.  

Ano the r  impor tan t  fac tor  that  has  an equal bear ing  on  the accu- 
racy of  f in i te -e lement  solut ions  is mesh  densit ies.  A l though  this 
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point is not fully addressed in this article, the authors would like 
to make the following remarks regarding this issue. The analy- 
sis was performed for two different mesh configurations in the 
case of cylinder upsetting, as well as center punch forging. In 
each case, both configurations were found to yield similar re- 
sults. The results for center punch forging after remeshing 
show very high strain gradients between neighboring elements 
(Fig. 13), and the effect of mesh distortion might be less severe 
for a finer mesh. H-section preform analysis results show that 
the interelement strain rate gradient is quite low for most of the 
elements, and results are not expected to improve with an in- 
crease in the mesh density. 

7. Concluding Remarks 

The objective of this research was to identify a suitable ap- 
proach toward mesh generation for the finite-element simula- 
tion of bulk metal-forming processes and test it by implement- 
ing it into CFORM. After a review of the current mesh 
generation methods and the specific requirements imposed by 
the forging design process, a knowledge-based approach, com- 
bined with the use of parametric mapping techniques, was se- 
lected for implementation. The reasons for making this choice 
have been stated in the introductory section. The input to this 
system consists of the description of boundary segments and 
vertices, together with the specification of the number of nodes 
on each segment. The mesh density distribution can be control- 
led by a proper placement of the boundary nodes. The final out- 
put of the system consists of the nodal coordinates and nodal 
connectivity arrays. Graphics interface has been developed in 
HOOPS, which allow the analyst to check the mesh at each 
stage of mesh generation. The mesh generation system has 
been successfully used in a number of forging problems and has 
been found to reduce the preprocessing time to a great extent. 

Three mapping methods (described in Section 3) were used 
to generate the final meshes. The differences between the three 
methods were found to be very small. However, Lagrange in- 
terpolation was found to be the most suitable in terms of ele- 
ment distortion and computational time. The results presented 
in this article are not successful in isolating the effect of taper 
and skew on the solution accuracy, but they do provide an esti- 
mate of their critical magnitudes. 

Presently, the mesh generation system is not fully automat- 
ic, but a skeleton or a basic framework has been programmed, 
which can be used to build a more sophisticated system. Work 
is being done to fully automate both--the mesh generation as 
well as remeshing, using the knowledge derived from the re- 
suits obtained in different forging simulations. 
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